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We investigate the time-dependent, coherent, and dissipative dynamics of bound particles in single multi-
level quantum dots in the presence of sequential tunneling transport. We focus on the nonequilibrium regime
where several channels are available for transport. Through a fully microscopic and non-Markovian density-
matrix formalism we investigate transport-induced decoherence and relaxation of the system. We validate our
methodology by also investigating the Markov limit on our model. We confirm that not only does this limit
neglect the coherent oscillations between system states as expected but also the rate at which the steady state
is reached under this limit significantly differs from the non-Markovian results. By a systematic analysis of the
decay constants and frequencies of coherent oscillations for the off-diagonal elements of the reduced density
matrix under various realistic tunneling rate anisotropies and energy configurations, we outline a criteria for
extended decoherence times.
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I. INTRODUCTION

It is a fundamental feature of quantum theory that the
dynamics of an isolated system will follow a unitary evolu-
tion, and thus be fully reversible. In practice, most quantum
systems are influenced by uncontrolled and inevitable inter-
actions with an often incoherent environment, and this influ-
ence will typically destroy this deterministic evolution and
result in the rapid vanishing of any quantum coherence
within the open system.1

A large body of theoretical work has been carried out
throughout the last half century which has pushed forward
the investigation of the dynamics of open quantum systems
�OQSs�. The seminal work by Nakajima2 and Zwanzig3 on
projection operator methods, as well as the works by Kraus,4

Lindblad,5 and Gorini, Kossakowki, and Sudarshan6 on
quantum dynamical semigroups, and by Davies7 on Markov-
ian master equations, have rigorously established the condi-
tions for positivity of physical probabilities in open quantum
systems. Since then, Markovian approaches have been suc-
cessfully used8 to study steady-state phenomena on open sys-
tems where the past memory of the system is neglected, or
on closed unitary systems, where the dynamics are determin-
istic and thus reversible.

The advent of technological applications for quantum co-
herence, such as in quantum information processing and
cryptography, as well as the use of ultrafast laser-pulse exci-
tations, are requiring resolutions of the quantum dynamics of
a system down to a femtosecond time scale.9 This transient
regime, which carries the coherence and relaxation dynam-
ics, cannot in general be described by a coarse-grained Mar-
kovian limit,10 and a non-Markovian approach is usually
necessary. On this point there has been significant progress in
recent years; the application of non-Markovian theories to
formal physical models in the area of low-dimensional dy-
namical quantum systems has been extraordinarily fruitful.
For example, electron transport by means of full counting
statistics,11,12 current and shot-noise analysis by diagram-
matic techniques,13 qubit dynamics in the presence of 1 / f
noise,14 decoherence of qubit systems by means of effective

Hamiltonians for the reservoir,15 electron-spin dynamics in
quantum dots,16 and decoherence in ballistic nanostructures
by projector operator techniques,17 and transient currents
through quantum dots by means of the reduced density op-
erator formalism.18

Formalisms based on nonequilibrium Green’s functions
�NEGFs� have also been successful in the analysis of much
phenomena in mesoscopic systems.19–21 Notably, work in
both elastic and inelastic transport in quantum dots has been
carried out by means of NEGF or derivatives of this
formalism.22,23 However, NEGF is inherently a closed-
system formalism where the system has Hamiltonian
dynamics,24 and thus does not account for irreversibility aris-
ing from interactions with an unseen, unknown, or otherwise
intractable environment. Promising advances have been
made to extend NEGF to OQS, for example, by treating the
environment as a correction to the system’s self-energy,25 or
by calculating two-time correlation functions,26 effectively
separating the time scales into transient and steady-state re-
gimes. These and other approaches constitute significant
progress toward a full non-Markovian open system analysis
within the NEGF formalism.46

Even so, when the evolution of the many-body system
states themselves are sought, one must calculate the Green’s
functions and then extract the density matrix, which in the
nonequilibrium case may not be unique.26 An alternative for-
mulation, one we adopt in the present paper, is to work with
the reduced density matrix �RDM� directly. This arguably
provides a more intuitive description of the dynamics of non-
Markovian OQS, and it readily yields the actual states of the
system and quantum coherence between them.

Although the works cited above have covered a tremen-
dous amount of ground, to our knowledge there has not been
a systematic analysis of the effects of diverse energy and
coupling regimes on the quantum coherence in an OQS un-
der the presence of transport-induced relaxation. Thus, the
aim of this paper is to investigate the effects of varying en-
ergy and coupling parameters on the non-Markovian dynam-
ics of a single few-electron open quantum dot under the
RDM formalism. We focus on the sequential transport re-
gime where two or more channels are available for transport,
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and solve the RDM for the system for the occupation prob-
abilities and quantum coherence to determine energy and
coupling regimes leading to larger decoherence times.

This paper is outlined as follows: in Sec. II we derive the
evolution equations for the density matrix of the OQS in the
Born approximation, and a brief description of the Markov
limit is given for completeness. Section III develops the non-
Markovian transport theory for a single quantum dot nano-
structure coupled to semi-infinite leads. The tunneling
Hamiltonian for the transport model and the assumptions
made for the system and reservoirs are described in Sec.
III A. Section III B presents in detail the derivation of the
analytical expressions for the transition matrix �the memory
kernel� containing the dynamics for this model. In Sec. IV
we illustrate the non-Markovian approach by considering the
case of a multilevel dot in a regime where two channels are
available for transport. The analytical expressions for the el-
ements of the RDM are shown in Sec. IV A, and results are
compared with the Markov limit under a variation coupling
anisotropy to different orbitals in the quantum dot. The off-
diagonal elements representing the coherence in the system
are presented in Sec. IV B as well as a thorough analysis of
the effects of varying the dominant energy and coupling pa-
rameters for this model. A summary of the results of the
variations of the energy and coupling parameters is given in
Sec. IV C. Finally, conclusions are presented in Sec. V.

II. DYNAMICS OF THE OPEN QUANTUM
SYSTEM

We concentrate on the dynamics of an OQS which does
not in general follow a unitary evolution, and where an in-
herent irreversibility may arise due to coupling with an es-
sentially Markovian �memoryless� environment. When infor-
mation is continually exchanged between an OQS and an
environment whose degrees of freedom are either unknown,
intractable, or uninteresting, the �possibly mixed� states of
the system alone are described not by state vectors, but rather
by the RDM of the system.29 The RDM can be obtained by
taking a partial trace over the degrees of freedom of the
environment on the total density matrix for the OQS plus
environment such that

��t� = Trenv���t�� = �
n

Wn�t���n�t����n�t�� �1�

is the RDM of the system, ��t� is the total density matrix,
and Wn�t� is the probability that the system state ��n�t�� is
occupied at time t.

For Eq. �1� to represent a physical system, where the di-
agonal elements describe the occupation probabilities and the
off-diagonal elements describe the coherence between the
OQS states, we require �ii�t��0, as well as ��ij�t���1 for all
i and j.30

The partial trace over the degrees of freedom of the envi-
ronment has the benefit of accounting for the influence of the
environment on the OQS, but it also has the drawback of
only allowing for limited or average environment descrip-
tions. Although partial-trace-free approaches have been
developed,31 to our knowledge they have only addressed the

steady-state regime where memory effects have been ne-
glected.

Considering an environment with a much greater number
of degrees of freedom relative to those of the system, and for
weak OQS-environment coupling in a sequential tunneling
regime �Born approximation�, we can assume that the system
has negligible effect �no back action� on the environment,
that the system is not correlated with the environment, and
that the environment is essentially in equilibrium at all
times.29 In this case, the total density matrix for the OQS
plus environment can be written as

��t� 	 ��t� � ��0� . �2�

where ��0� is the environment’s equilibrium density matrix.
The dynamics of the RDM in the Born approximation can

be obtained by an iterative integration of the Liouville–von
Neumann equation to obtain the time dependence for higher
order processes,1

�̇�t� = − L�t���0� + 

0

t

dt�L�t�L�t����t�� , �3�

where L�t�O= i�−1�H�t� ,O� is a Liouville superoperator for
any operator O and Hamiltonian H�t�.

The matrix elements of the above generalized master
equation for the RDM in the interaction picture can be writ-
ten in the form29

�̇ab�t� = �
c,d



0

t

dt��cd�t��Rabcd�t − t��ei�abcdt�, �4�

where, Rabcd�t− t�� is the memory kernel characterizing the
system, the environment, and their coupling, and where
�abcd=�ab−�cd, with �ab= �Ea−Eb� /� denoting energy dif-
ferences between OQS states.

The system of coupled integrodifferential convolution
equations, Eq. �4�, is solved by transforming it into an alge-
braic system of equations in Laplace space,

�
cd

Wabcd�s��̃ab�s� = �̃cd�0� . �5�

where

Wabcd�s� = �	ca	bd�s + i�ab� − R̃abcd�s�� ,

�̃ab�t� � �ab�t�e−i�abt, R̃abcd�t� � Rabcd�t�e−i�bat.

For a given set of basis states, an inverse Laplace transform
of Eq. �5� yields the time-dependent solutions in the Heisen-
berg picture.

Analytic solutions in Laplace space can be obtained for
only a few OQS states ��2–4� since the computational ef-
fort rapidly increases with the number of available transport
channels. For larger numbers of channels, we adopt a nu-
merical approach to solve the linear system in Eq. �5�.

In the regime of sequential tunneling transport through a
quantum dot containing uncorrelated electrons, the important
transport channels are those single-particle system states �
�,
whose energy lies within the bias window. These single-
particle states define the possible dynamical many-body
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states of the system as those involved when the single-
particle states are empty or occupied. Thus, for k channels, a
minimum of 2k many-body system states are required �for
empty or occupied�. Furthermore, �2k�2 density-matrix ele-
ments are required to describe the population probabilities as
well as the coherence between the states. The temporal evo-
lution of the density-matrix elements themselves are gov-
erned by �2k�4 transition tensor elements. In practice, sym-
metry considerations can reduce this number only by a
constant amount �for details see Ref. 29, p. 292�.

For the results in the following sections we perform the
inverse Laplace transform in the form of a Bromwich
integral32 over a contour chosen such that all singularities are
to the left of the contour line. The integration is numerically
performed33 at each time step using a combination of a 25-
point Clenshaw-Curtis and a 15-point Gauss-Kronrod inte-
gration method.

Markov limit

We validate the use of a non-Markovian approach by a
brief comparison with the long-time Markov limit.29 This
approximation assumes that the environment correlation
functions vanish at such a fast rate that the reversibility, and
thus memory of the OQS is essentially destroyed.1 In such a
case, �̇�t� becomes local in time,

�̇ab�t� → �
c,d

�cd�t�

0

t

dt�Rabcd�t − t��ei�abcdt�. �6�

For time intervals t− t� much greater than the environment’s
correlation time �, the correlation functions for environment
operators rapidly become uncorrelated and decay to zero,
�Fk

†�t− t��Fk��	�Fk
†�t− t����Fk��	0. Since the environment is

uncorrelated beyond this t− t��� time, there are no contri-
butions to the dynamics, and the upper integration limit in
�6� may be extended to infinity with negligible error in the
calculations. The lower integration limit of Eq. �6� can be
taken to negative infinity, and the memory kernel becomes a
delta function of the channel energies. This leads to a Fermi’s
golden rule for transitions with strict energy conservation.
Thus, the coupled set of integrodifferential evolution equa-
tions become a coupled set of first-order ordinary differential
equations,

�̇ab�t� = �
c,d

Wabcd�cd�t� , �7�

where Wabcd is a time-local transition rate.
The Markov approximation is typically valid only in the

long-time limit and leads to a zero average of the off-
diagonal elements of the OQS, thus the transition rates Wabcd
can be written as Waabb�Wab, since only transitions between
diagonal elements become relevant.

In the following sections we verify the validity of the
Markov limit only once the system has established a steady
state,8 and that both the approach and relaxation times to the
steady state in this limit are unreliable.

III. DYNAMICS IN A SINGLE QUANTUM DOT

A. Transport model

We consider a sequential transport model for a single
quantum dot coupled to semi-infinite leads as depicted in
Fig. 1�a�. The total Hamiltonian describing this coupled sys-
tem plus environment is given by

H = HS + HQD + HD + HT, �8a�

where HS and HD are the Hamiltonians describing the source
and drain leads, respectively. These are taken to be noninter-
acting Fermion systems shifted by the bias voltage VB,

HS�D� = �
s�d�



s�d� �
1

2
eVB�ds�d�

† ds�d�, �8b�

with ds�d�
† a creation operator for the source �drain�, and ds�d�

an annihilation operator.
The Hamiltonian for the quantum dot in Eq. �8a� is given

by

HQD = �
i

���i + eVg�ci
†ci + Vint, �8c�

where ci
† and ci are system creation and annihilation opera-

tors, the single-particle energies ��i are all shifted by the
applied gate voltage, Vg, and Vint is the interaction among the
confined particles. In the present work we set Vint=0. Al-
though we expect our qualitative results to remain un-
changed, the implications of a full coulomb interaction in
this transport theory may have significant consequences and
will be the subject of future work.

The tunneling Hamiltonian describing the coupling be-
tween the reservoirs and the dot is given by34

HT = �
k,r=�s,d�

�Tk
rdr

†ck + H.c.� , �8d�

where Tk
s�d� is a tunneling coefficient for a particle tunneling

from the single-particle state �k� in the dot to the source
�drain� reservoir. For the present model, we assume a small
level broadening �, and low temperature such that ��kBT
��E. In this case the reservoirs are in their respective non-
degenerate ground states.

|Ψ|2

core

edge

r

barrier

0

Source Drain

Dot

µs

µd
µN−1

µN

(a) (b)

FIG. 1. �Color online� �a� Schematic representation of the single
quantum dot �QD� model coupled to source and drain reservoirs.
Two transport channels are present within the bias window. �b�
Representation of a orbital asymmetry where edge �p-type� orbitals
are more strongly coupled to the reservoir compared to core �s-type�
orbitals.
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B. Memory kernel

In order to obtain the system dynamics for this transport
model, we derive the memory kernel Rabcd�t� appearing in
Eq. �4�. By evaluating the Liouville superoperator appearing
in Eq. �3� in the interaction picture, and within the weak-
interaction limit to second order in Eq. �8d�, the time evolu-
tion of the RDM becomes

�̇�t� = −
i

�
TrB�HT�t�,��0���0��

−
1

�2

0

t

dt� TrB�HT�t�,�HT�t��,��t����0��� . �9�

The tunneling Hamiltonian �8d� can be rewritten in the
form

HT�t� = �
k

�Fk�t�Qk
†�t� + Fk

†�t�Qk�t�� , �10�

where Qi�t�=eiHQDtcie
−iHQDt, and where

Fk�t� = �
s

Tk,s
S Ls�t� + �

d

Tk,d
D Ld�t� �11�

is a generalized reservoir operator that takes into account
both source and drain reservoir states, where Ls�d��t�
=eiHS�D�tds�d�e

−iHS�D�t.
Noting that the interaction Hamiltonian has zero expecta-

tion with respect to the equilibrium ensemble of the environ-
ment, we have that

TrR�Fk�t���0�� = �Fk�t�� = 0,

�Fk�t�Fk��t��� = �Fk
†�t�Fk�

† �t��� = 0. �12�

Thus, the odd moments of HT as defined in Eq. �11� with
respect to the density matrix for the equilibrium reservoir
will all vanish.

With Eq. �12�, the evolution equation �Eq. �9�� becomes

�̇�t� = −
1

�2�
i,j



0

t

dt���Qi�t�Qj
†�t����t�� − Qj

†�t����t��Qi�t��

��Fi
†�t�Fj�t��� + ���t��Qi�t�Qj

†�t�� − Qi�t���t��Qj
†�t���

��Fi�t�Fj
†�t��� + ���t��Qj�t��Qi

†�t� − Qi
†�t���t��Qj�t���

��Fj
†�t��Fi�t�� + �Qi

†�t�Qj�t����t�� − Qj�t����t��Qi
†�t��

��Fi�t�Fj
†�t���� . �13�

A matrix element of the first term on the right of Eq. �13�
�where there are eight terms in total� can be rewritten in the
following way:

�m��Qi�t�Qj
†�t����t���m�

= �
n,n�,k

	mn��m��Qj�k��k�Qi
†����n��n���t���n��ei�

mn�
m�n

t,

�14�

where �mn�
m�n= �Em�−En+En�−Em�, �= t− t�, and where the

RDM elements have been rewritten as

�n�m�t� = �
n

	nm�n�n�t�ei�nmt. �15�

Terms 3, 5, and 7 in the right side of Eq. �13� can be
written in a similar way.

The elements of the second term in Eq. �13� can be re-
written as

�m��Qi�t���t��Qj
†�t���m�

= �
nn�k

	mn��m��Qj�k��k�Qi
†����n��n���t���n��ei�

mn�
m�n

t,

�16�

and similarly for terms 2, 6, and 8 in Eq. �13�.
The reservoir operator Fi has no explicit time dependence;

we can therefore write �F

†�t�F��t���= �F


†F����� and
�F�

†�t��F
�t��= �F�
†���F
�.

Finally, for a given quantum dot state, we allow coupling
with all available reservoir states, while treating the reservoir
energy as a continuum. That is,

�
r

er ⇒ NR


�B

�R

der + 

�R

�T

der� , �17�

where er denotes the reservoir energies, Nr and �R are the 2D
density of states and chemical potential, respectively, for res-
ervoir R, and �T and �B are the top and bottom energies of
the band respectively. With redefinitions �14�–�17�, we re-
write Eq. �13� as

�̇m�m�t� =
1

�2�
i,j



0

t

dt��nn��t����Qm�n
j† Qn�m

i ����Fi
†���Fj�

+ Qm�n
j Qn�m

i† ����Fi���Fj
†�� + �Qn�m

j† Qm�n
i ����FjFi

†����

+ Qn�m
j Qm�n

i† ����Fj
†Fi����� − �

k

	mn��Qkn
j†Qm�k

i ���

��Fi
†���Fj� + Qkn

j Qm�k
i† ����Fi���Fj

†��

− �
k

	m�n�Qn�k
j† Qkm

i ����FjFi
†���� + Qn�k

j Qkm
i† ���

��Fj
†Fi������ , �18�

where, Qn�k
i �����n��Qi�t− t���k�.

Equation �18� is the generalized master equation for the
system, and describes the time evolution of the RDM. By
making use of Eq. �11� and �17�, we derive the reservoir
correlation functions appearing in Eq. �18� to be

�F

†�t�F�� = K
�

r ��B�r

 �t�; �F�F


†�t�� = K
�
r ��T�r


 �t�

�F�
†F
�t�� = K�


r ��B�r

� �t�; �F
�t�F�

†� = K�

r ��T�r


� �t� ,

�19�
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where we have defined

�xy

 �t� �

ei�x
t − ei�y
t

t
, K
�

r �
iNr

�
�T


�T��r

representing the dynamics due to the interaction of the envi-
ronment with the quantum dot, where �x
= �Ex−E
� /� is a
frequency, �T
�r is the tunneling coefficient appearing in Eq.
�8d�, Nr is the density of states for the two-dimensional elec-
tron gas environment arising from the continuum of reservoir
states, and t is time.

Comparing Eq. �18� with Eq. �4� and using Eq. �19� we
finally arrive at the microscopically derived expression for
the memory kernel for the present model

Rabcd�t� = �

,�,r

K
�
r ���B,�r


 �t��badc

� − ��T,�r


 �t��cdab

� �

+ K�

r ���B,�r


� �t��abcd

� − ��T,�r


� �t��dcba

� � , �20�

where

�abcd

,� � �a�c


† �c��d�c��b� − 	ac�b�c
c�
† �d�

represents the allowed system transitions for the present
model, with the indices a, b, c, and d denoting many-body
states; 
 and � denote single-particle states, and r
� �source,drain�. For the present analysis we assume a large
band limit where the top ��T� and bottom ��B� of the band
are taken to be effectively positive and negative infinity, re-
spectively.

The dynamics of the density matrix can be calculated for
a given set of basis states, where Eq. �20� allows for inde-
pendent tuning and analysis of tunneling rate anisotropies
due to asymmetries in the source and drain barrier widths,
and due also to asymmetries in the coupling between orbitals
with differing angular momentum.

In the following sections we treat the case where two
transport channels are available and analyze the evolution of
the system states when the energy and interaction parameters
are varied.

IV. TWO-CHANNEL SYSTEM

We present results for both the diagonal and off-diagonal
elements of the RDM, under the sequential transport model

and formalism outlined in the preceding sections. For defi-
niteness, we consider a quantum dot with N confined par-
ticles, and with two tunneling transport channels available
within the bias window. Each channel involves a fluctuation
in the particle number between N and N�1, and we choose
them to involve either the ground or first-excited state of the
N-particle system. This is an experimentally relevant regime.
�See, for example Refs. 35 and 36�

In general, the availability of k transport channels in-
volves a minimum of 2k states. We denote by �0� the �N
−1�-particle ground state of the system, �1� and �2� denote
ground states of the N and �N+1�-particle system respec-
tively, and �3� denotes the first-excited state of the N-particle
system. The four basis states of the system are thus defined
as

�0� = ��N − 1�g.s.�, �1� = ��N�g.s.� ,

�2� = ��N + 1�g.s.�, �3� = ��N�e.s.� . �21�

A schematic representation of the system is shown in
Fig. 2.

A. Population probabilities

The occupation probabilities for the system to be in a
given basis state are obtained from the diagonal elements of
the RDM. We thus derive the algebraic system Eq. �5� for the
two-channel system with states defined by Eq. �21�. The di-
agonal elements in Laplace space are given by

�̃nn�s� = �
i,j,k,l �Gn

n
1 −
1

2
Gj

iGi
j −

1

3
Gi

iGk
jGi

k� + Gi
n�Gj

iGj
j + Gj

iGk
jGk

k − Gj
kGk

jGi
i�

1 −
1

2
Gj

iGi
j −

1

3
�Gj

iGk
jGi

k + Gj
iGk

jGl
kGi

l� +
1

8
Gj

iGi
jGl

kGk
l ��ijkl �22�

where �ijkl is the symmetric permutation tensor given by

�ijkl = �1 ijkl permutation of 0123

0 otherwise,
� �23�

and all indices run over the many-body system states defined in Eq. �21�.

Eβ

Eα

|1〉|0〉 |2〉 |3〉

FIG. 2. �Color online� Schematic representation of the system
under consideration. Four system states are considered depending
on the relative occupation of the single-particle orbitals �
� and ���,
with energies E
 and E� respectively. Each orbital can in principle
have different tunnel couplings to the leads.
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In Eq. �22� the terms Gi
i and Gj

i are defined as

Gi
i = D−1��̃ii�0� +

�̃13
0 R̃ii13�s�

s + i�13 − R̃1313�s + i�13�

+
�̃31

0 R̃ii31�s�

s + i�31 − R̃3131�s + i�31�
� ,

Gj
i = D−1�R̃iij j�s� +

R̃13j j�s + i�13�R̃ii13�s�

s + i�13 − R̃1313�s + i�13�

+
R̃31j j�s + i�31�R̃ii31�s�

s + i�31 − R̃3131�s + i�31�
� ,

with

D = s − R̃iiii�s� −
R̃13ii�s + i�13�R̃ii13�s�

s + i�13 − R̃1313�s + i�13�

+
R̃31ii�s + i�31�R̃ii31�s�

s + i�31 − R̃3131�s + i�31�
. �24�

In the Markov limit �Eq. �7�� the system of equations for
the two-channel case is analytically solved in the time do-
main to obtain

��t�nn =

�
nijk

Pnijk + �
ijkq

Pijkq�qq�0�e−�
pq

Wpqt

�
ijkl

Pijkl

�25�

where, Pijkl=WijWjkWkl�ijkl, with �ijkl given by Eq. �23�,
and the transition rate Wij given by

Wij =
2�

�2 �
r



−�

�

de�Nr��T��r�2�	�e� − �ij����r − e�� + 	��ij − e����e� − �r�� .

where r= �source, drain�, 	 is the Dirac-delta function, and
� is the Heaviside function.

As a case study to validate the non-Markovian approach,
we analyze the effects of an orbital anisotropy on the dynam-
ics of the system; we define edge and core system orbitals by
the strength of their coupling to the reservoirs owing to the
detailed shape of the wave function.37 In two-dimensional
parabolic confinement, for example, the particle’s wave func-
tion is composed of associated Laguerre polynomials where
the core orbitals are weakly coupled to the leads owing to a
poor �s-type� overlap with the reservoir states, whereas edge
orbitals �p-type� are more strongly coupled to the reservoirs
since these wave functions penetrate more deeply into the
confining electrostatic barriers �see illustration Fig. 1�b��.

In relation to Fig. 2, we denote orbital �
� an edge orbital
and ��� a core orbital. Further denoting the orbital transmis-
sion by T
 and T�, we can define an orbital anisotropy pa-
rameter as �=1−T� /T
, with 0���1.

The following energy parameters are used in the subse-
quent analysis: applied bias Vbias=6 meV symmetric
about the Fermi energy 
Fermi=30 meV, with two channels
within the bias window, E
=
Fermi+1 meV and E�=
Fermi
−1 meV.

The non-Markovian system of Eq. �22� is evaluated nu-
merically by performing an inverse Laplace transform as de-
scribed in Sec. II, thus obtaining results for the diagonal
elements of the RDM in the time domain.

The time evolution of the diagonal elements of the RDM
in the large bandwidth limit is shown for increasing orbital
anisotropy in Fig. 3. The set of figures on the left �Figs.
3�a�–3�d�� are the results obtained from the Markov limit by
solving Eq. �7�, while the figures on the right �Figs.

3�e�–3�h�� present the non-Markovian results based on Eq.
�4�. Four features in particular are evident in the non-
Markovian results which we now discuss.

First, in the non-Markovian results, we observe high-
frequency oscillations representing the coherent evolution of
the occupancy between states with the same particle number,
�1� and �3� �represented by RDM elements �11�t� and �33�t�
see Eq. �21��. As expected these oscillations are not present
in the Markov limit.

Second, for small couplings to the core orbitals �T�

�T
� the four probabilities couple into two distinct pairs,
states �1� and �2�—the N and �N+1�-particle ground states—
are strongly coupled, as are states �0� and �3�—the
�N−1�-particle ground state and the N-particle first-excited
state. We can understand why this occurs with recourse to
Fig. 2. The transition between states �1� and �2� is through an
edge orbital �with energy E
� and this coupling is stronger
than the transition between �1� and �0� which involves a core
orbital �with energy E��. Similar arguments apply for the
coupling between states �3� and �0� �strong coupling� and
between �3� and �2� �weak coupling�. This pairing of prob-
ability curves is also observed in the Markov limit, but again
without oscillatory behavior.

Third, in the steady state �t→��, all occupation probabili-
ties tend to the same value of 1/4. This is seen regardless of
the tunneling strengths of core and edge states as long as
these rates are nonzero. The equal probability of 1/4 for each
level can be understood as being due to the symmetric bar-
riers between the dot and the source on the one hand, and
between the dot and the drain on the other. Since these bar-
riers are symmetric, any level will have an equal probability
of being either occupied or unoccupied. Therefore in the
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steady state and under symmetric barriers the levels will be,
on average, occupied and empty for the same amount of
time. This result shows agreement with the Markov limit,
where as expected all dynamical states would share equal
probability in the steady state under symmetric barriers.

Fourth, although we observe that all four states are
equally occupied in the steady state, the time to actually
reach the steady states does depend on the relative couplings
to the core and edge orbitals. As expected, we observe a
disagreement with the Markov limit, where the Markovian
results show that although the core or edge states probabili-
ties couple at a much shorter time, the overall steady state is
actually reached much later that in the non-Markovian re-
sults.

The fact that the time taken to reach the steady state in-
creases as the tunneling to the core state decreases can be
understood as the effect of decreasing the available tunneling
pathways. Fewer pathways available means that the system
takes longer to reach the steady state. This behavior is exag-
gerated in the Markov approximation. In the limit of zero
tunneling to the core orbital, for example, states �3� and �0�

will never become occupied, and the remaining two levels
will each reach an occupation probability of 1/2 rather than
1/4, as expected by preservation of the trace. In this case the
Markov limit agrees with the non-Markovian results.

Although much of the recent work in the area of nonequi-
librium quantum dot systems has made use of Markovian-
type approximations,38–43 it is fundamental to acknowledge
the strict long-time limit requirement of these types of ap-
proximations in general, and thus their unreliability on the
transient behavior of the system,10 especially when consider-
ing coherence properties of the system at short time scales.
The disregard for the memory of the system in effect ne-
glects most of the details of the coherent transient dynamics
and their use should only be invoked for coarse-grained phe-
nomena. Nonetheless, as expected, the Markov limit does
yield reasonable results at sufficiently long times,8,29 when
the system has reached a steady state, or when considering
intermediate time scales of averaged behavior, such as the
average total current through a system.

Focusing now on the transient results shown in Figs.
3�e�–3�h�, we have extracted the positions and magnitudes of
the peaks and fit44 these to a decaying exponential of the
form Ae−�t. Results for the decay constant � for each value
of �=1−Tcore /Tedge are shown in Fig. 4�a�. We observe a
slower decay rate as the orbital asymmetry ��� is increased.
We interpret this result by considering the change in relative
occupation probability of the core channels relative to the
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FIG. 3. �Color online� Markovian and non-Markovian time evo-
lution of population probabilities in a quantum dot with two trans-
port channels and four states. �See Fig. 2.� The plots are for sym-
metric source and drain tunnel barriers, and varying orbital
asymmetry. We assume a 6 meV bias symmetric about a 30 meV
Fermi energy, and two transport channels at energies

Fermi�1 meV. Plots �a� through �d� are results for the Markov
limit �Eq. �7��, whereas plots �e� through �h� present results for the
Non-Markovian theory.
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edge channel as tunneling to and from them is increasingly
suppressed. In such a case the relative occupation of core
states also decreases and any contribution from these states
to the coherent evolution of the system will delay the overall
decay to steady state, thus increasing the decoherence time.

In a similar manner we have extracted the frequency of
oscillation as � is increased, where the results are shown in
Fig. 4. The linear decrease in the frequency with an increase
in � can be explained by again consider a decrease in the
core channel’s occupation probability as � is increased.
Therefore, a coherent superposition between states depen-
dent on both core and edge channels will also exhibit the
relative decrease in probability from the core-orbital state.

In the following section, we look at the coherence ele-
ments of the RDM under variations of the orbital anisotropy
as well as of other relevant coupling and energetic param-
eters.

B. Coherence

The evolution of the quantum coherence between system
states with the same particle number,45 the Hilbert coherence,
is coupled to the evolution of the occupation probabilities
through the off-diagonal elements of the RDM. For the
present two-channel case, these coherence elements are de-
rived in Laplace space to be

�̃13�s + i�13� =

�̃13
0 + �

n=0

3

�̃nn�s�R̃13nn�s + i�13�

s + i�13 − R̃1313�s + i�13�
�26�

where the diagonal elements �̃nn�s� are given by Eq. �22�,
and �13 is the energy difference between the N-particle states
�1� and �3�.

We numerically evaluate the Bromwich integral of Eq.
�26� to obtain the real and imaginary parts of the off-diagonal
element �̃13�t�= �1��̃�t��3� in time space. We are interested in
the effects of the barriers and energy configuration of the
system on the evolution of the coherence between dot states.
In this regard, the important parameters considered are: �1�
the orbital anisotropy, �2� the source/drain barrier asymme-
try, �3� the thickness of the barriers �given inversely by the
strength of the coupling �T
�r between reservoir r and dot
orbital 
�, �4� the energy-level spacing �E between the
transport channels present within the bias, �5� the applied
bias voltage Vbias, and �6� the shift of energy levels within the
bias window. The variations in these parameters are dis-
cussed below.

1. Orbital anisotropy

In Fig. 5, we present results for the same energetics and
variation in the orbital anisotropy as shown for the diagonal
elements �Fig. 3�. The Rabi-type coherent oscillations ob-
served in Sec. IV A between the diagonal elements �11�t� and
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FIG. 5. �Color online� Time evolution of the real and imaginary parts of the off-diagonal elements of the RDM, �13�t�, representing the
Hilbert coherence of the system. The plots are for symmetric source and drain tunnel barriers, and varying orbital asymmetry. We assume a
6 meV bias symmetric about the Fermi energy, and two transport channels at energies 
Fermi�2 meV. The coupling strength for the edge
channel is set at �T
�edge�=0.5 meV, while the coupling to the core channel is varied.
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�33�t� are also clearly seen in the evolution of �13�t� as ex-
pected.

Investigating the effects of this orbital anisotropy on the
evolution of the system, we focus on the decay constant and
frequency of oscillation of the off-diagonal elements of the
RDM as ��=1−Tcore /Tedge� is increased. In Fig. 6�a� the de-
cay of the probability to a steady state is fitted44 by an expo-
nential function with rate �. We observe a slower decay rate
as the orbital asymmetry factor ��� is increased. As in Sec.
IV A, we interpret this result by considering the change in
relative occupation probability of states dependent on the
core channel relative to states dependent on the edge chan-
nel, as tunneling to and from the core channel is increasingly
suppressed. In such a case the relative occupation of core
states also decreases and any contribution from these states
to the coherent evolution of the system will delay the overall
decay to steady state, thus increasing the decoherence time.

The effect of a variation in the orbital anisotropy on the
frequency of oscillation is shown in Fig. 6�b�. We again ob-
serve a linear decrease of the frequency with an increase in
�. By the same argument as discussed in Sec. IV A, we con-
sider a decrease in the occupation probability of the core
channel as 
 is increased. A coherent superposition between
states dependent on both the core and edge channels will also
exhibit the relative decrease in probability from the core-
dependent state. Thus as expected, the coherent evolution
between states with the same particle number is described by
the off-diagonal element �13�t�.

2. Source/drain barrier asymmetry

Keeping now the orbital anisotropy fixed and varying the
asymmetry between the source and drain barriers, we ob-
serve that as the thickness of one barrier relative to the other
is arbitrarily changed, there is a always an increase in the
decay rate � �see Fig. 7�a��. This can be understood by con-
sidering the contribution to the decoherence rate due to vari-
ous asymmetries: In the case where the drain barrier is
thicker than the source barrier, tunneling through the drain is

suppressed relative to that through the source barrier. There-
fore decoherence due to rapid tunneling out of the dot is also
suppressed. In the opposite case where the source barrier is
thicker, tunneling into the dot is suppressed relative to tun-
neling out and thus decoherence due to fast injection into the
dot is also suppressed. Clearly, the decoherence will be
greatest in the completely symmetric case since the contri-
butions from both electron injection and extraction will be
greatest.

Similarly, we find that the frequency of oscillation of the
coherence term ��13�t�� is also maximal in the completely
symmetric case, and decreases otherwise �see Fig. 7�b��. This
is expected since we can consider the frequency of oscilla-
tion to be proportional to the energy splitting due to the
coupling with the reservoirs. Note that the shape of the curve
in both the decay constant and frequency plots is quadratic
with the relative thickness of the barrier. This is a conse-
quence of the fact that, to leading order, dissipative effects
are quadratic in the system-bath couplings. In the limit of
infinitely thick barriers, there is no oscillation since tunneling
though the barrier has been completely suppressed.

3. Coupling strength

We now investigate the dependence of the coherence on
the coupling strength between the reservoirs and the avail-
able orbitals in the dot while keeping the asymmetry between
the barriers fixed. For simplicity, we also keep the ratio of
the core-orbital tunneling rate to the edge orbital tunneling
rate fixed such that the coupling strengths are varied at the
same rate.

Figure 8 presents the change in the decay constant and the
frequency of oscillation of the coherence element �13�t� as
the coupling strength is varied. We observe that both the
decay constant and frequency closely follow a quadratic fit
on the coupling. As mentioned in the discussion of the results
of barrier asymmetry, this is in agreement with the coupling
effects being quadratic to leading order. We expect this to be
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a reasonable result in cases where sequential transport is the
dominant process.

4. Energy-level spacing

Keeping now the barriers fixed, as well as the applied bias
voltage, we look at a variation in the energy-level spacing
�E=E
−E� between the N-particle states �1� and �3�. �All
previous results considered �E=2 meV.� Results for the de-
cay constant and frequency are shown in Figs. 9�a� and 9�b�,
respectively. The level spacing is varied symmetrically about
the Fermi energy. In this case we observe a decrease in the
rate of decay as the level spacing is increased �Fig. 9�a��.
This result can be understood in the following way: consider
an electron in the source reservoir which tunnels into one of
the available levels in the dot, and then tunnels out to the
drain reservoir. Since the dot states are not eigenstates of the
full Hamiltonian, the energy of the electron within the dot is
not well defined and can have a value within the energy-level
spacing, �E. As the electron tunnels from the source reser-
voir into the dot it can have at most an energy Emax=
Fermi
+1 /2 eVbias. For the electron to then tunnel into a drain
state, it must have an energy of at least Emin=
Fermi
−1 /2 eVbias+�E. Therefore, the available energy states of
electrons that can tunnel into the dot from the source reser-
voir is given by Emax−Emin=eVbias−�E. Thus, the greater
�E is, the fewer available energy states for transport into the
dot, and the longer lived the dot states are. At approximately
1.5 meV we observe a sudden drop in the decay constant
leveling again after an increase in �E of 0.5 meV. We inves-
tigate this feature by looking at its dependence on other pa-
rameters, and find that as the coupling strength between the
reservoir and the dot is decreased, the feature decreases �see
Fig. 9�b��. We also observe that the slope of the curve de-
creases after the drop, indicating a slower decrease of the
decay constant.

The dependence of frequency of oscillation of the coher-
ence on the energy-level spacing is shown in Fig. 9�b�. The

relevant energy differences giving rise to oscillations are the
level spacing �E on the one hand, and the level energy and
the edge of the bias window on the other. For small �E, it is
the latter which dominates and so � shows weak dependence
on �E as shown in Fig. 9�b�. For larger �E, it is �E itself
which dominates and so we see � growing linearly with �E.

5. Applied bias voltage

A variation in the applied bias voltage has also been in-
vestigated, with the results presented in Fig. 10. Here
EFermi=30 meV, E
=31 meV, E�=29 meV. For a symmet-
ric variation in the bias voltage about the Fermi energy, we
observe an overall increase of the decay constant as the bias
voltage is increased �Fig. 10�a��. We explain this overall be-
havior by considering that as the bias is increased, more
energy states are available in the reservoirs for electrons to
tunnel into or out of, electrons in the dot then have a larger
number of tunneling pathways, thus increasing relaxations,
and decoherence. This overall trend is also seen in the fre-
quency of oscillation of the coherence �Fig. 10�b�� where, as
the bias is increased, the frequency generally decreases. As
discussed in Sec. IV B 4, the frequency of oscillation follows
the magnitude of the level spacing relative to the energy
difference between the levels and the edge of the bias. There-
fore, as the bias increases relative to the level spacing, the
frequency of oscillation is expected to decrease.

Within this overall behavior, we observe further structure
in Fig. 10 in the form of pronounced plateaus occurring at
specific intervals. This structure can be explained by noting
that there are low-frequency oscillatory envelopes �not
shown� on the evolution of the RDM elements given by the
interplay of all relevant energies in the system. The intervals
from one plateau to the next are representative of the fre-
quency of these slow envelope oscillations. The effect is also
seen in the behavior of the high-frequency oscillations,
where as the bias in increased, these form peaks with period
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given by the low-frequency envelope �Fig. 10�b��.
We also find the number and position of these plateaus

and peaks depends on the position of the levels within the
bias window. Figures 10�c� and 10�d� show an increase in the
number of plateaus as the levels inside the dot are shifted
off-center by 0.1 meV within the bias window �E


=31.5 meV, E�=29.5 meV�. Therefore the low-frequency
oscillations are strongly dependent on the relative energy dif-
ference between the level spacing and the spacing between
the levels and the edge of the bias window. Further analysis
of these features will be the basis of future work by the
authors.

6. Energy-level shift within bias window

As mentioned in the discussion above, the position of the
transport channels relative to the center of the bias window
has consequences on the overall coherence between system
states. As before, we keep the bias fixed at 6 meV symmetric
about a Fermi energy of 30 meV, giving a chemical potential
for the source reservoir of EFermi+

1
2Vbias=33 meV. Similarly

the chemical potential for the drain reservoir is then EFermi

− 1
2Vbias=27 meV. By varying both levels simultaneously

and keeping the level spacing at �E=2 meV, we can then

move the edge level �E
� from 29 meV to 33 meV to sweep
the levels over the entire window. Figure 11 presents the
result of this shift of the position of E
. In a similar fashion
to the variation in the applied bias, we observe structure in
both the decay constant and frequency of oscillation of the
coherence of the system. In Fig. 11�a�, the decay constant
presents two plateaus nearly symmetrical about the Fermi
energy with size in the order of �0.5��E. For the frequency
of oscillation �Fig. 11�b�� we see that it presents peaks at
about the same energies as the edges of the plateaus �similar
to the results of variation in Vbias in Fig. 10�. We also observe
an asymmetry of these peaks about the Fermi energy, where
the overall height decreases as the levels increase past the
center of the window. As discussed in Sec. IV B 5, the pla-
teaus appearing in the decay coefficient, and the peaks ap-
pearing in the frequency of oscillation are due to envelope
oscillations of low frequency in the evolution of the RDM
elements.

From these results, we can assert that the decoherence
time is longest when the levels are either centered in the bias
window, or with at least one level in resonance with the
chemical potential of one of the reservoirs.

Similar to the results of Sec. IV B 5, we cannot defini-
tively ascribe a microscopic origin to these plateaus and
peaks. Analysis of this structure will be the focus of future
work.

C. Summary

We now summarize the results of the variation in energy
and coupling parameters on the decoherence and frequency
of oscillations of the system. For the sequential transport
model presented, the following conditions may indepen-
dently increase the decoherence time in the system: An in-
crease in the difference of tunneling rates between available
channels in the transport window, an increase in the barrier
asymmetry between source and drain barriers, a decrease of
the overall coupling strength between reservoirs and dot, an
increase in the energy-level spacing between available trans-
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�c� and of the frequency of oscillation � �b� and �d� as the applied
bias voltage is increased symmetrically about the transport chan-
nels. In �a� and �b� the transport levels are kept symmetric about the
center of the bias window, whereas in �c� and �d� the transport
levels are shifted off-center within the bias window by 0.5 meV. In
all cases, �E=2 meV.
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port channels, a resonant case between available channels
and reservoir Fermi energies or a relatively small bias volt-
age, a symmetrical positioning of transport levels within the
bias window, or resonance between a transport level and a
reservoir Fermi energy.

Similarly, the frequency of oscillation can be decreased
by: An increase in the orbital anisotropy between available
channels in the transport window, an increase in the barrier
asymmetry between source and drain barriers, a decrease of
the overall coupling strength between reservoirs and dot, a
decrease in the energy-level spacing between available trans-
port channels, a resonant case between available channels
and reservoir Fermi energies, a relatively high bias voltage, a
symmetrical positioning of transport levels within the bias
window. There is also the case that the frequency decreases
in certain intervals as the bias voltage is increased or as
positions of the energy levels are swept over the bias win-
dow. Table I presents a tabular summary of the above results.

We thus find that an optimal lifetime for the coherence
between system states may be obtained by a suitable combi-
nation of the above energetic and interaction regimes. At the
very least, by using the above criteria, it may be possible to

confirm the barrier and energy parameters in experiment by
studying decay rates and oscillatory behavior.

V. CONCLUDING REMARKS

We have developed a non-Markovian formalism for the
transient evolution of the reduced density matrix of a quan-
tum dot weakly coupled to source and drain reservoirs.
Within a tunneling Hamiltonian approach, we have analyti-
cally derived an explicit memory kernel describing the se-
quential transport dynamics of the system for an arbitrary
number of transport channels. The results of the analysis
where compared with the Markov limit for a two-channel
�four-state� system, where we verified marked differences in
the transient dynamics. Apart from the expected absence of
coherent oscillatory behavior in the Markovian results, it was
also found that the rate at which the system approaches a
steady state differs considerably between both theories in the
regime of highly anisotropic tunneling into distinct system
orbitals. It was found that the Markov approximation shows
significantly longer time to reach a steady state when the
tunneling anisotropy is high, thus confirming its applicability
only in the long-time limit. Through a comprehensive and
systematic analysis, the decoherence time and frequency of
oscillations observed in the non-Markovian results where
found to depend on both the energy parameters of the system
as well as the distinct coupling parameters to the reservoirs.
Finally, distinct regimes have been outlined where both of
these coherence characteristics could be increased.
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